Implementation of Compute Intensive Algorithms on

Software Configurable Processor

Ganesh"", Rodrigues Steevan®, Niranjan, U.C.2

1. M. Tech student, NMAMIT, Nitte 574 110, India 2. Manipal Dot Net Pvt. Ltd, Manipal 576 104, India
* ganeshsprabhu @ gmail.com

Abstract: Software configurable processors (SCP) implement
compute intensive applications very efficiently on the special
on-chip configurable hardware. The SCP by Stretch Inc.
converts the compute-heavy algorithms into custom
instructions, called extension instructions (EI) which run on
the on-chip logic. The Processor interleaves the El's between
regular instructions and the on-chip hardware executes the
algorithm in parallel, accelerating the application. This
results in a performance gain of more than order of
magnitude over an un-accelerated processor.

This paper explains the implementation of two compute
intensive algorithms on Stretch SCP, namely (i) colour space
conversion and (ii) histogram equalisation. The repeated
processing required by these algorithms is made easier by the
SCP which allows packing of multiple pixels into a vector.
The vector processing makes SCP achieve high throughput.
Profiling an application identifies compute-intensive spots in
the program, which are computed on the on-chip hardware by
issuing EI's.

Keywords— Software Configurable Processor, Instruction Set
Extension Fabric, Internal RAM, Extension Instruction, Wide
Register.

I. INTRODUCTION

The unique feature of software configurable processor
[2] is that the compute intensive part of the application
code can be run on the on-chip hardware known as
ISEF. The most computationally expensive part in
video/image processing is the repetitive pixel
manipulation. By running these compute intensive
programs on the SCP's ISEF, one can reduce the
execution cycles, thereby speeding up the applications.
The operands for the ISEF are passed with the help of
wide register, which are 128 bits in width. This high
bandwidth input, further worked upon by vector
processing improves the speed of computation
dramatically. Programming of the SCP to fit the
application configures the on-chip hardware and this
configuration takes the form of an extended instruction

(EI). The processor issues appropriate Els to run the
application.

The colour space conversion algorithms are used for
converting data from one colour space to another [1].
Typically this is necessitated in devices such as monitors
and printers which work in different colour formats.
The main goal of our colour space conversion algorithm
running on SCP was to achieve high throughput by
using vector processing on the ISEF. The colour system
mainly uses set of equations to transform colour from
one format to another. These equations are converted to
fixed-point arithmetic to make them amenable for SCP
operations.

Histogram equalisation [1], [5] is an image
enhancement application and is known as contrast-
stretching transformation. Low-contrast images result
due to poor illumination, lack of dynamic range in the
image sensors, and wrong setting of a lens aperture
during image acquisition. The main idea behind contrast
stretching is to increase the dynamic range of the Gray
levels in low-contrast images. This image transformation
requires computation of the image cumulative histogram
and derives a look-up-table from it. Implementation of
histogram equalisation on SCP increases the throughput
in terms of pixel processing rate, when compared to a
general-purpose processor implementation.

II. Scp ARCHITECTURE

Software configurable processors are very useful for
implementing compute intensive applications [2]. The
S6000 is a family of SCP of Stretch Inc, whose
architecture is shown in Fig. 1. The SCP has a core
made up of Tensilica LX, which is VLIW RISC
architecture. The software-configurable part of the
processor is ISEF, which is capable of doing multiple
arithmetic and logical operations in parallel. The ISEF
consists of multiple multipliers, arithmetic units,
registers and multiplexers; and is embedded in the

processor. The S6000 for example is made up of 64
multiplication units each capable of 8x16bit
multiplication, 4096 arithmetic units and 64KB of
embedded RAM.

To speed up an application, one need to identify the
parts of the program, which consume most compute-
time. This is done using the profile utility and such
compute-intensive parts of the code are called hot spots.
The hot spots are computed on ISEF, which accelerate
their execution. The operands for the ISEF are passed
through the wide registers, which are 128bits wide.
However, it is also possible to send the inputs to ISEF
directly using DMA and store them in the ISEF RAM.
The ISEF can pack and unpack the inputs sent through
wide registers without consuming any cycles.

| DDR 2 Controller
L3

[Processor Array
“ Network Interface -
& Switch

b« e 1
20
2 2 L
= 0
=N
S 3l
[=5

yodeieq penp
H

QYND|

S6 SCP Engine |

s [rcre | [oo |

Fig. | The S6000 Family Architecture

The Stretch design tools enable the user to port the
high-processor-cycle-consuming parts of the application
code onto the ISEF, by writing them as Stretch
extension functions [6] in C/C++ language. The Stretch
extension functions running on the ISEF are known as
extended instructions (EI). The execution of the EI in
the ISEF with its inherent parallel processing accelerates
the running of the application. The conversion of
compute intensive part of the program into custom made
processor instruction running on the on-chip hardware
makes the SCP well suited for number of applications.

In addition, each S6000 member includes external
memory support with a DDR2-667 SDRAM controller
with 16- or 32-bit interface and an enhanced generic
interface bus (GIB) for FLASH and other memory
mapped peripherals. On-chip memory sub-systems
include instruction and data cache, as well as a 64-KB
block of SRAM. The 40 DMA controllers facilitate
moving data on and off the devices with minimal

processor interaction. The S6100 family member
includes a four-lane PCle interface. Other integrated
peripherals include triple speed Ethernet MAC, two
multi-channel inter—IC Sound (I2S) interfaces, two-wire
interface (TWI), serial peripheral interface (SPI), two
UARTS, and general purpose 1/0 (GPIO).

III. IMmPLEMENTATION OF COLOUR CONVERSION
ALGORITHMS

Colour conversion [1], [8] algorithms convert colour
attribute of a pixel/data from one colour space to
another. Different colour space conversion algorithms
are implemented on SCP, such as RGB to CMY, RGB to
YCC, RGB to YUV, RGB to YIQ and RGB to
CMYK]9]. The forward as well as reverse conversions
are of hi-fidelity quality. Each of the colour conversion
has different applications, for example the
YIQ/YCC/YUV is television transmission primaries
used extensively in TV Broadcasting and Receivers [3].
One of the conversion processes RGB to YIQ is
explained in detail in the next section.

Fig. 2 depicts the general model for the colour
conversion process on Software Configurable Processor.
The colour of the input pixels is converted from one
format to another. For real-time colour conversion of a
QCIF video at 25 frames per second, the SCP should be
able to process half mega pixels in a second.

Y
A 4

Conversion on SCP

Input Color Model Output Color Model

Fig. 2 Colour Conversion Model

A. RGB-YIQ Colour Space Conversion

The following equations are used to convert pixel data
from 8-bit RGB to 8-bit YIQ [1], [4]. As Stretch SCP is
a fixed-point processor, these equations are converted
into fixed-point arithmetic, by multiplying them with
scaling factor of 256.

The conversion formula is,
y=(77*r+ 150 * g + 29 * b) / 256;
i=(153*r-70*g-82*Db)/256;
q=(054*r-134* g+ 80 *b)/256;

The reverse conversion formula is
r=(256 *y + 245 *i+ 159 * q) / 256;
g=(256*y-T70*i-166* q)/256;
b= (256 *y-283 *1i+436 * q)/256;

The three colour attributes of the pixels red, blue and
green (r,g,b) are converted to the illumination and
orthogonal chrominance components (y,i,q). The SCP
used in this example runs at the clock frequency of 300

MHz.

/15Inpul Pixels/

Load pixels in WR

v

Perform conversion
on ISEF

v

Store pixels in WR
/15 Output pixels/

Fig. 3 Flowchart for Colour Space Conversion

Fig. 3 shows the step by step procedure to transform
colour of pixels from one format to another on SCP.

| Program Execution Unit |

\ *

Wide Registers

Conversion
algorithm

ISEF

Fig. 4 Implementation of Colour Space Conversion

Unpack the pixels |— —»{ Pack the pixels

The performance of the code is measured through the
utility profiling. Profiling the rgb-to-yiq function on the
processor for 640 pixels but without using the ISEF
resulted in 707524 cycles. This amounts to 11 process-
cycles/pixel (707524/64000). It is observed that this
result is consistent with that obtained by running the
application on a board with SCP.

Then the rgb-to-yiq function is programmed as a
custom instruction on the SCP, which accelerates the

repetitive task of multiple pixel transformation. Pixel
data are moved into and out of ISEF with the help of
wide registers (WR), which are 128-bit long, as shown
in Fig. 4. If one pixel is passed to the ISEF through the
WR for every EI, then the total number of compute
cycles is 234050. This is an improvement of more than
3x over the non-ISEF based implementation. It is also
observed that only 30% of the available resources in
ISEF were used for computation.

Wide registers are capable of holding 16 bytes and
each pixel is stored in 3 bytes as (r,g,b) components.
Thus, 5 pixels with 15 bytes were packed into a WR to
make a vector and processed in parallel in the ISEF.
This vector processing took 63518 cycles for colour
conversion of 640 pixels. Although the available
computational resources are not utilised completely, the
full capacity of wide registers is made use of. The
optimal use of the WR leads to reduced compute cycles.

The cycle measurement on the SCP board shows a few
processor stalls, which increases the cycle count. Data
cache miss is responsible for most of the stalls. Storing
the input and transformed pixels in the internal data
RAM whose latency is zero, eliminates the cache
misses. It is also possible to use more than one wide
register to improve the data bandwidth. By using two
wide registers to move the data in and out of ISEF and
with extended vector processing the cycle count was
reduced to 72517(for 8 pixels).

The most optimised version of the application
processes 640 pixels in 63518 cycles achieving a
performance gain of 0.99 cycles/pixel. Also, compared
with the non-ISEF based implementation, the
application achieved a speed-up factor of 11 (707524
cycles/63518 cycles).

It is possible to convert different colour space system
from one format to another [12], [13], by following the
above flow. The flow initially involves identifying the
compute-intensive parts [7] of the application and then
programming the compute-intensive parts such that they
are executed on the on-chip hardware. The programming
part thus involves packing multiple data into WR and
vector processing on ISEF [10],[11]. This programming
configures the ISEF and which the processor sees as a
custom-made extension instruction. Proper issue of
extension instructions in the application program results
in fast and efficient execution.

B. ISEF Usage

ISEF does not support the floating point arithmetic,
due to limited on-chip computational resources.
Therefore, the floating point operations are converted
into equivalent fixed point arithmetic using scaling
factors and LUTs (look up tables). All the built in
operations in 'C' are not supported, but only a select few
are supported. Trigonometric functions and division
operations are not supported on ISEF. User has to write
his own fixed point functions to mimic these
unsupported operations.

Operations that cannot be easily converted into fixed-
point arithmetic exist in RGB to HSI (HSV/HSL)
conversion [13]. In such cases the computational parts
requiring floating point are performed outside the ISEF.
This still leads to enhanced performance (CMY-CMYK
[12]). ISEF has special provision to pack and unpack the
inputs sent through wide registers, which are processor
cycle-free. Maximum of 3 wide registers can be used to
pass the operands to the ISEF and 2 wide registers can
be used to get the ISEF results.

C. Running the Application

The application program can be run and debugged on
different targets such as native, remote and simulator.
Native mode is faster and mainly used for quick-starting
the application development. In this mode, the compiler
builds the application for running on the x86 platforms
(Windows or Linux). In the simulator mode the compiler
simulates the behaviour of the SCP, with cycle-accurate
precision. In the remote target, the applications are run
on different boards comprising SCP and the generated
ISEF configuration bit files are loaded on to the SCP.

IV. HistoGRAM EQUALISATION ON Scp

Histogram Equalisation [1] is an image processing
technique widely used for contrast stretching of low-
contrast images. The technique computes a pixel
transformation function from the cumulative histogram
of the given input image. In this example, the histogram
and the transformation function are computed on the
ISEF. The computed transformation function is stored in
the IRAM (ISEF Random Access Memory) as a look up
table, which is referenced for each pixel to generate
enhanced-contrast image.

The Histogram Equalisation is implemented as a
sequence of three Extension Instructions (EI). The first
EI computes the histogram of 16 pixels simultaneously,

storing the result in 16 banks of IRAM. As the SCP
restricts use of one IRAM bank per EI, the histogram is
broken up into sub histograms. The second EI merges
the sub histograms to get cumulative histogram. The
cumulative histogram acts as the pixel transformation
function and is stored on 16 banks of IRAM as a look up
table (LUT). The final EI accesses the LUT to transform
Gray-scales of 16 pixels simultaneously. The use of
multiple banks of IRAM with their simultaneous read-
compute-write property accelerates the computations.
The block diagram and the pictorial representation of the
histogram equalisation technique are shown in Fig.5 and
Fig.6 respectively.

Start

Read image
grayscales

i

Compute sub-histograms
distributed on 16
IRAM blocks

v

Add sub-histograms &
Compute cumulative
histogram function

v

Equalize 16 pixels using
cumulative histogram

/Output image/

Fig. 5 Flowchart for Histogram Equalisation

| Program Execution Unit

!

Wide Register
4 Y i Y I I A []
16-pixels
\ 4 \ \ 4 Y \ A \ 4 A Y
Histogram Store results Equalized

computation 7] in 16 banks pixels

A

\

Merge Cumulative »| Store results

histogram histogram in IRAM

Gray-scale Transformation
ISEF

Fig. 6 Implementation of Histogram Equalisation

D. Results

This section reports the experimental results obtained
from histogram equalisation for an image of size
128x128.

Fig. 7 Before histogram equalisation ~ Fig. 8 After histogram equalisation

Fig. 7 is the input low contrast image. The result of
contrast stretching by the histogram equalisation
technique is shown in Fig. 8. The cycle count for the
non-ISEF based implementation of histogram
equalisation was 17124334 cycles. By vector processing
and optimal use of IRAM the compute cycles were
reduced to 3154353.

E. Observations of Histogram Equalisation

The S6 processor stalls the issue of Els during
histogram computation when called repeatedly. This was
seen in the pipeline trace, which shows that Xtensa
pipeline is extended up to stage 28. However, wherever
possible the compiler unrolls the loop comprising EI, by
loading and unloading the pixels into independent set of
WR registers and thereby reducing the processor stalls.

V. CoNCLUSIONS

We have presented the results of implementation of
two image processing algorithms on the software
configurable processor. The feature of the SCP namely,
the running of the compute-intensive parts on the ISEF
as extension instructions is exploited to enhance the
throughput of the algorithms. The two algorithms are
same in the sense that they transform an attribute of a
pixel (colour and grey scale), but differ in the sense that
one of them is implemented as a set of equations, while
the other determines the transformation on the fly and
implements it as a look-up-table. We achieved
performance gain in compute-cycles per pixel of 0.99
and 1.9 for colour space conversion and histogram
equalisation respectively. The corresponding
acceleration factors for these two implementations are
11 and 5 over a non-ISEF based implementation with
46% and 12% utilisation of ISEF compute resource.

Stretch also provides a parallel processing platform
called Software Configurable Processor Array (SCPA).

This array is made of multiple SCPs, wherein one of
them acts as master processor interacting with the
external world. Stretch provides a very user-friendly set
of APIs for programming the multiple processors. The
application can be run as number of tasks running
simultaneously on these processors. Different colour
conversion algorithms such as RGB-YIQ and RGB-
CMY can be run on the multiple SCP's in parallel. This
would further speed up the application.

A CKNOWLEDGMENT

We thank Stretch Inc USA and Manipal Dot Net Pvt.
Ltd., for providing the opportunity to write this paper.

REFERENCES

[1] Rafael C. Gonzales, Richard E. Woods, “Digital Image Processing”,
second edition, Prentice Hall, 2002.

[2] The S6000 Family of Processors,
http://www stretchinc.com/_files/s6ArchitectureOverview.pdf,
December , 2010

[3] YIQ, http://en.wikipedia.org/wiki/YIQ,December, 2010.

[4] Color Conversion Algorithms,
http://web.jfet.org/colorconversions.html, December, 2010.

[S] Histogram Equalization,
http://fourier.eng.hmc.edu/e161/lectures/contrast_transform/node3.htm
1, December, 2010

[6] A software-configurable processor architecture,
http://www fdi.ucm.es/profesor/mozos/EC/Gonzalez06.pdf, October,
2006

[71 General architecture design Utility and Synthesis Tool for
Optimization(GUSTO), http://cseweb.ucsd.edu/~kastner/papers/phd-
thesis-irturk.pdf ,2009

[8] Color Space conversion ,
http://www.stretchinc.com/_files/Color_Conversion_App_Note_v1_4.
pdf, June 2005

[9] Adrian Ford, Alan Robertsb, “Color space conversions” ,August 1998

[10] Software-Configurable Processors on the Rise,

http://www.soccentral.com/results.asp?EntryID=13660, June 2005

Joe Hanson, Bruce McNamara, “Using C to accelerate compute

intensive applications”, Proceeding of the SDR 05 Technical

Conference and Product Exposition, 2005

Converting between RGB and CMY, YIQ, YUV,

http://local.wasp.uwa.edu.au/~pbourke/texture_colour/convert/,

February, 1994.

Color conversion math and formulas,

http://www.easyrgb.com/index.php?X=MATH,

[11]

[12]

[13]

